Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Architecture of the Rag GTPase Signaling Network.

Identifieur interne : 000721 ( Main/Exploration ); précédent : 000720; suivant : 000722

The Architecture of the Rag GTPase Signaling Network.

Auteurs : Raffaele Nicastro [Suisse] ; Alessandro Sardu [Suisse] ; Nicolas Panchaud [Suisse] ; Claudio De Virgilio [Suisse]

Source :

RBID : pubmed:28788436

Descripteurs français

English descriptors

Abstract

The evolutionarily conserved target of rapamycin complex 1 (TORC1) couples an array of intra- and extracellular stimuli to cell growth, proliferation and metabolism, and its deregulation is associated with various human pathologies such as immunodeficiency, epilepsy, and cancer. Among the diverse stimuli impinging on TORC1, amino acids represent essential input signals, but how they control TORC1 has long remained a mystery. The recent discovery of the Rag GTPases, which assemble as heterodimeric complexes on vacuolar/lysosomal membranes, as central elements of an amino acid signaling network upstream of TORC1 in yeast, flies, and mammalian cells represented a breakthrough in this field. Here, we review the architecture of the Rag GTPase signaling network with a special focus on structural aspects of the Rag GTPases and their regulators in yeast and highlight both the evolutionary conservation and divergence of the mechanisms that control Rag GTPases.

DOI: 10.3390/biom7030048
PubMed: 28788436
PubMed Central: PMC5618229


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Architecture of the Rag GTPase Signaling Network.</title>
<author>
<name sortKey="Nicastro, Raffaele" sort="Nicastro, Raffaele" uniqKey="Nicastro R" first="Raffaele" last="Nicastro">Raffaele Nicastro</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland. raffaele.nicastro2@unifr.ch.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sardu, Alessandro" sort="Sardu, Alessandro" uniqKey="Sardu A" first="Alessandro" last="Sardu">Alessandro Sardu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland. alessandro.sardu@unifr.ch.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Panchaud, Nicolas" sort="Panchaud, Nicolas" uniqKey="Panchaud N" first="Nicolas" last="Panchaud">Nicolas Panchaud</name>
<affiliation wicri:level="1">
<nlm:affiliation>Novartis Institutes for Biomedical Research, NIBR, Novartis Pharma AG, 4002 Basel, Switzerland. nicolas_panchaud@hotmail.com.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Novartis Institutes for Biomedical Research, NIBR, Novartis Pharma AG, 4002 Basel</wicri:regionArea>
<wicri:noRegion>4002 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De Virgilio, Claudio" sort="De Virgilio, Claudio" uniqKey="De Virgilio C" first="Claudio" last="De Virgilio">Claudio De Virgilio</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland. claudio.devirgilio@unifr.ch.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28788436</idno>
<idno type="pmid">28788436</idno>
<idno type="doi">10.3390/biom7030048</idno>
<idno type="pmc">PMC5618229</idno>
<idno type="wicri:Area/Main/Corpus">000755</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000755</idno>
<idno type="wicri:Area/Main/Curation">000755</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000755</idno>
<idno type="wicri:Area/Main/Exploration">000755</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Architecture of the Rag GTPase Signaling Network.</title>
<author>
<name sortKey="Nicastro, Raffaele" sort="Nicastro, Raffaele" uniqKey="Nicastro R" first="Raffaele" last="Nicastro">Raffaele Nicastro</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland. raffaele.nicastro2@unifr.ch.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sardu, Alessandro" sort="Sardu, Alessandro" uniqKey="Sardu A" first="Alessandro" last="Sardu">Alessandro Sardu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland. alessandro.sardu@unifr.ch.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Panchaud, Nicolas" sort="Panchaud, Nicolas" uniqKey="Panchaud N" first="Nicolas" last="Panchaud">Nicolas Panchaud</name>
<affiliation wicri:level="1">
<nlm:affiliation>Novartis Institutes for Biomedical Research, NIBR, Novartis Pharma AG, 4002 Basel, Switzerland. nicolas_panchaud@hotmail.com.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Novartis Institutes for Biomedical Research, NIBR, Novartis Pharma AG, 4002 Basel</wicri:regionArea>
<wicri:noRegion>4002 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De Virgilio, Claudio" sort="De Virgilio, Claudio" uniqKey="De Virgilio C" first="Claudio" last="De Virgilio">Claudio De Virgilio</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland. claudio.devirgilio@unifr.ch.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biomolecules</title>
<idno type="eISSN">2218-273X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Amino Acids (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (metabolism)</term>
<term>GTP Phosphohydrolases (chemistry)</term>
<term>GTP Phosphohydrolases (metabolism)</term>
<term>Gene Expression Regulation (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (metabolism)</term>
<term>Models, Molecular (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Yeasts (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Levures (métabolisme)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Protéines fongiques (composition chimique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Régulation de l'expression des gènes (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>dGTPases (composition chimique)</term>
<term>dGTPases (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Fungal Proteins</term>
<term>GTP Phosphohydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>Fungal Proteins</term>
<term>GTP Phosphohydrolases</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines fongiques</term>
<term>dGTPases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Levures</term>
<term>Protéines fongiques</term>
<term>dGTPases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Conserved Sequence</term>
<term>Gene Expression Regulation</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Modèles moléculaires</term>
<term>Régulation de l'expression des gènes</term>
<term>Séquence conservée</term>
<term>Séquence d'acides aminés</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The evolutionarily conserved target of rapamycin complex 1 (TORC1) couples an array of intra- and extracellular stimuli to cell growth, proliferation and metabolism, and its deregulation is associated with various human pathologies such as immunodeficiency, epilepsy, and cancer. Among the diverse stimuli impinging on TORC1, amino acids represent essential input signals, but how they control TORC1 has long remained a mystery. The recent discovery of the Rag GTPases, which assemble as heterodimeric complexes on vacuolar/lysosomal membranes, as central elements of an amino acid signaling network upstream of TORC1 in yeast, flies, and mammalian cells represented a breakthrough in this field. Here, we review the architecture of the Rag GTPase signaling network with a special focus on structural aspects of the Rag GTPases and their regulators in yeast and highlight both the evolutionary conservation and divergence of the mechanisms that control Rag GTPases.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28788436</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>03</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2218-273X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2017</Year>
<Month>06</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>Biomolecules</Title>
<ISOAbbreviation>Biomolecules</ISOAbbreviation>
</Journal>
<ArticleTitle>The Architecture of the Rag GTPase Signaling Network.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E48</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/biom7030048</ELocationID>
<Abstract>
<AbstractText>The evolutionarily conserved target of rapamycin complex 1 (TORC1) couples an array of intra- and extracellular stimuli to cell growth, proliferation and metabolism, and its deregulation is associated with various human pathologies such as immunodeficiency, epilepsy, and cancer. Among the diverse stimuli impinging on TORC1, amino acids represent essential input signals, but how they control TORC1 has long remained a mystery. The recent discovery of the Rag GTPases, which assemble as heterodimeric complexes on vacuolar/lysosomal membranes, as central elements of an amino acid signaling network upstream of TORC1 in yeast, flies, and mammalian cells represented a breakthrough in this field. Here, we review the architecture of the Rag GTPase signaling network with a special focus on structural aspects of the Rag GTPases and their regulators in yeast and highlight both the evolutionary conservation and divergence of the mechanisms that control Rag GTPases.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nicastro</LastName>
<ForeName>Raffaele</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland. raffaele.nicastro2@unifr.ch.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sardu</LastName>
<ForeName>Alessandro</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland. alessandro.sardu@unifr.ch.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Panchaud</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Novartis Institutes for Biomedical Research, NIBR, Novartis Pharma AG, 4002 Basel, Switzerland. nicolas_panchaud@hotmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>De Virgilio</LastName>
<ForeName>Claudio</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland. claudio.devirgilio@unifr.ch.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>06</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Biomolecules</MedlineTA>
<NlmUniqueID>101596414</NlmUniqueID>
<ISSNLinking>2218-273X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D020558">GTP Phosphohydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020558" MajorTopicYN="N">GTP Phosphohydrolases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015003" MajorTopicYN="N">Yeasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">EGO complex</Keyword>
<Keyword MajorTopicYN="Y">Lst4–Lst7</Keyword>
<Keyword MajorTopicYN="Y">Rag GTPases</Keyword>
<Keyword MajorTopicYN="Y">SEACAT</Keyword>
<Keyword MajorTopicYN="Y">SEACIT</Keyword>
<Keyword MajorTopicYN="Y">amino acid signaling</Keyword>
<Keyword MajorTopicYN="Y">budding yeast</Keyword>
<Keyword MajorTopicYN="Y">target of rapamycin complex 1 (TORC1)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>05</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>06</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>06</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28788436</ArticleId>
<ArticleId IdType="pii">biom7030048</ArticleId>
<ArticleId IdType="doi">10.3390/biom7030048</ArticleId>
<ArticleId IdType="pmc">PMC5618229</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2010 Jun 11;38(5):768-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20542007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Feb 13;156(4):786-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24529380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1980 Nov 13;288(5787):187-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7001252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 May 7;73(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Jun 4;58(5):804-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25936802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Apr;196(4):1077-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24514902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Sep 2;265(5177):1405-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8073283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Sep 25;159(1):122-133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25259925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2016 Sep 20;9(446):ra92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27649739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2017 Jun 29;37(14 ):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28483912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2016 Mar 08;2:15049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27462445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E592-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18765678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2010 Jul 15;29(28):4068-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20498635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2016 Jun;41(6):532-545</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27161823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Feb 17;292(7):2660-2669</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28057755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Mar;190(3):885-929</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22419079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Jun 30;369(6483):756-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8008069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Nov 20;9(4):1281-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25457612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Oct;13(10):6012-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8413204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Apr 26;15(8):702-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15854902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Jan 1;351(6268):53-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26586190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2008 Jan;4(1):5-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jul 18;154(2):403-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23870128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Mar 16;543(7645):433-437</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28199315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Aug;10(8):935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18604198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2016 Dec 27;2:16051</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28066558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 May 15;36(10 ):1302-1315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28420743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2014 Nov 10;26(5):754-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25446900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 May 5;268(13):9410-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Sep 5;289(36):25010-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25063813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Dec 24;139(7):1342-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20064379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2001 Apr 23;1538(2-3):181-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11336789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Nov 27;6:10025</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26612684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Int. 2011 Sep;59(4):445-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21070828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Oct;11(10):4822-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1922022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2015 Apr 6;33(1):67-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25816988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2014 Sep 18;41(3):375-388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25238095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Aug 10;47(3):349-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22749528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Sep 1;22(17):4465-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12941698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jan 31;493(7434):679-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23263183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Apr 13;7:11016</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27072897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jun;5(6):e1000515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19521502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jan 13;270(2):815-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7822316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Oct 06;4:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26439012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2013 Sep 15;12(18):2948-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23974112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jan 22;327(5964):425-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20093466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Mar 26;519(7544):477-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25561175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 May 27;465(7297):502-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20428112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 2016 Aug;105(8):431-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26972107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Nov 26;115(5):577-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2016 Jun 07;9(431):re5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27273098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Apr 15;125(Pt 8):1920-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22344254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 May 31;340(6136):1100-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23723238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2013 Feb;23(1):53-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23317514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 May 22;6:7250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25998567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Aug 24;47(4):535-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22795129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2014 Jan 21;7(309):ra9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24448649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Jan 9;347(6218):194-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Mar 12;37(5):633-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20227368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Sep 14;150(6):1196-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22980980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7246-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2016 May 11;12 (5):e1006036</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27166823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 May 27;465(7297):435-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20428113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Small GTPases. 2016 Oct;7(4):239-246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27400376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2011 Nov;7(11):1392-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21804352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2016 Feb;26(2):148-159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26546292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):177-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(6):e21549</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21738705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Mar 16;543(7645):438-442</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28199306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1986;55:663-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2874766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Mar 24;355(6331):1306-1311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28336668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Apr 16;141(2):290-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20381137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Jan 1;351(6268):43-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26449471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Oct 6;13(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26387955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Apr 1;403(1):13-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17253963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2017 Apr;32:24-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28089905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2006 Jul;8(7):657-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16732272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Mar 24;165(1):153-164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26972053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 May 08;6:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28481201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Aug 5;13(15):1259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12906785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2011;80:943-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21675921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Apr 13;46(1):105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e36616</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22574197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Jan 9;347(6218):188-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Aug 7;55(3):409-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2015 Dec 15;26(25):4631-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26510498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Nov 19;30(46):11181-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1932038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Jan 1;351(6268):48-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26678875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Logist. 2014 Oct 02;4(4):e970840</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25750764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Jun 2;125(5):1003-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16751107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2015 Sep;25(9):1043-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26206314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1987;56:779-827</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3304147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Jul;152(3):853-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10388807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Feb 6;136(3):521-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19203585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Dec 1;270(48):28982-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biochem. 2012 Jun 24;13:11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22726655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 May 18;287(21):17530-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22474287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2014 Jul;24(7):400-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24698685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Oct;198(2):773-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25085507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Med (Berl). 2015 Oct;93(10):1061-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26391637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Jan 15;27(2):382-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26609069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2010 Aug 1;344(1):150-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Aug 11;536(7615):229-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27487210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1992 Jul;12(7):2958-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1620108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Oct 9;9(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25263562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2014 Jun;19(6):449-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24702707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013 May 28;6(277):ra42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23716719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2014 Sep 2;20(3):526-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Aug 15;25(16):1668-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Dec 11;11(12):e1005714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26659116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12574-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7809080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Jul 15;78(1):35-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7518356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Aug;176(4):2139-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17565946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Aug 23;271(34):20470-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8702787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2014 Jul 14;30(1):95-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25026036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Sep 30;202(7):1107-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24081491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 Oct 7;44(1):134-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21981924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Apr 25;272(17):11344-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9111041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2005 Dec;17(6):596-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16226444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2008 Aug;60(8):519-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18459165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2016 Aug 9;16(6):1510-1517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27477288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunobiology. 2011 Mar;216(3):343-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20961651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jun 1;30(11):2515-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12034841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jan;22(1):62-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14661025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1987 Oct 23;238(4826):542-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2821624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2014 Jul 14;30(1):86-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25026035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Mar 9;168(6):960-976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28283069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Sep 1;12(9):1445-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26299971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4931-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20194776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2014 Sep;26(9):1918-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24793303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Mar 1;21(5):833-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20053679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jan 15;268(2):923-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8419371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Jul 1;19(1):15-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15989961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2012 Dec 5;20(12):2151-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23123112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 24;287(35):29648-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22807443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Nov 4;334(6056):678-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):410-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Mar 9;49(9):1970-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20131908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2016 Sep 13;2:16035</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27648300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jan 31;289(5):2658-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24337580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2015 Jul;35(14):2479-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25963655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9828-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7937899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Mar 26;161(1):67-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25815986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 May 9;497(7448):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23636326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Jun 18;58(6):989-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26051179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Jun 29;46(6):833-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22575674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Nov;8(11):917-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17912264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2001 Jul 9;154(1):109-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11448994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Nov 21;52(4):495-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24095279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Mar 30;5:9502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25819761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014 Sep;10(9):1565-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25046117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Mar;14(3):1204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jun 26;284(26):17720-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2014 Aug;29:61-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24813801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Aug 8;134(3):451-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18692468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Mar 23;25(6):903-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17386266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jan 16;303(5656):373-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14726591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2009 May 15;437(1-2):32-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19374031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Nephrol. 2016 Dec;27(12 ):3653-3665</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27032892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 Mar 4;28(5):477-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19177150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1994 Jan;5(1):105-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8186460</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
<region>
<li>Canton de Fribourg</li>
</region>
<settlement>
<li>Fribourg</li>
</settlement>
<orgName>
<li>Université de Fribourg</li>
</orgName>
</list>
<tree>
<country name="Suisse">
<region name="Canton de Fribourg">
<name sortKey="Nicastro, Raffaele" sort="Nicastro, Raffaele" uniqKey="Nicastro R" first="Raffaele" last="Nicastro">Raffaele Nicastro</name>
</region>
<name sortKey="De Virgilio, Claudio" sort="De Virgilio, Claudio" uniqKey="De Virgilio C" first="Claudio" last="De Virgilio">Claudio De Virgilio</name>
<name sortKey="Panchaud, Nicolas" sort="Panchaud, Nicolas" uniqKey="Panchaud N" first="Nicolas" last="Panchaud">Nicolas Panchaud</name>
<name sortKey="Sardu, Alessandro" sort="Sardu, Alessandro" uniqKey="Sardu A" first="Alessandro" last="Sardu">Alessandro Sardu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000721 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000721 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28788436
   |texte=   The Architecture of the Rag GTPase Signaling Network.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28788436" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020